Combinatorial presentation of multidimensional persistent homology

نویسندگان

  • Wojciech Chacholski
  • Martina Scolamiero
  • Francesco Vaccarino
چکیده

A multifiltration is a functor indexed by Nr that maps any morphism to a monomorphism. The goal of this paper is to describe in an explicit and combinatorial way the natural Nr-graded R[x1, . . . , xr]-module structure on the homology of a multifiltration of simplicial complexes. To do that we study multifiltrations of sets and vector spaces. We prove in particular that the Nr-graded R[x1, . . . , xr]-modules that can occur as R-spans of multifiltrations of sets are the direct sums of monomial ideals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Multidimensional Persistent Homology Through a Finite Sampling

An exact computation of the persistent Betti numbers of a submanifold X of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of X is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of X from the ones of a union of balls centered on the sample points; this...

متن کامل

One-Dimensional Reduction of Multidimensional Persistent Homology

A recent result on size functions is extended to higher homology modules: the persistent homology based on a multidimensional measuring function is reduced to a 1-dimensional one. This leads to a stable distance for multidimensional persistent homology. Some reflections on i-essentiality of homological critical values conclude the paper.

متن کامل

Invariance properties of the multidimensional matching distance in Persistent Topology and Homology

Persistent Topology studies topological features of shapes by analyzing the lower level sets of suitable functions, called filtering functions, and encoding the arising information in a parameterized version of the Betti numbers, i.e. the ranks of persistent homology groups. Initially introduced by considering real-valued filtering functions, Persistent Topology has been subsequently generalize...

متن کامل

ar X iv : 0 90 8 . 00 64 v 1 [ m at h . A T ] 1 A ug 2 00 9 MULTIDIMENSIONAL PERSISTENT HOMOLOGY IS STABLE

Multidimensional persistence studies topological features of shapes by analyzing the lower level sets of vector-valued functions. The rank invariant completely determines the multidimensional analogue of persistent homology groups. We prove that multidimensional rank invariants are stable with respect to function perturbations. More precisely, we construct a distance between rank invariants suc...

متن کامل

Multidimensional persistence in biomolecular data

Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudomultidimensional pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1409.7936  شماره 

صفحات  -

تاریخ انتشار 2014